Design and Verification of the MPFA Scheme for Three-Dimensional Phase Field Model of Dendritic Crystal Growth
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F13%3A00202841" target="_blank" >RIV/68407700:21340/13:00202841 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/chapter/10.1007%2F978-3-642-33134-3_49" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-642-33134-3_49</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-33134-3_49" target="_blank" >10.1007/978-3-642-33134-3_49</a>
Alternative languages
Result language
angličtina
Original language name
Design and Verification of the MPFA Scheme for Three-Dimensional Phase Field Model of Dendritic Crystal Growth
Original language description
As an alternative to the sharp interface formulation, the phase field approach is a widely used technique for modeling phase transitions. The governing system of reaction-diffusion equations captures the instability of the underlying physical problem andis capable of modeling the evolution of complicated crystal shapes during solidification of an undercooled melt. For its numerical solution, we propose our novel anti-diffusive multipoint flux approximation (MPFA) finite volume scheme on a Cartesian mesh. The scheme is verified against the analytical solution of the modified sharp interface model. Experimental order of convergence (EOC) is measured for the temperature field in the usual norms. In addition, EOC is also obtained for the phase interface through approximating the volume of the symmetric difference of the solid phase subdomains. In the anisotropic cases including unusual higher order symmetries, computational studies with various settings also confirm convergence of our MPF
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Numerical Mathematics and Advanced Applications 2011
ISBN
978-3-642-33133-6
ISSN
—
e-ISSN
—
Number of pages
9
Pages from-to
459-467
Publisher name
Springer
Place of publication
Heidelberg
Event location
Leicester
Event date
Sep 5, 2011
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—