Delone Characteristics of Spectra of Cubic Complex Pisot Units
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F13%3A00209201" target="_blank" >RIV/68407700:21340/13:00209201 - isvavai.cz</a>
Result on the web
<a href="http://kmwww.fjfi.cvut.cz/ddny/?loc=historie" target="_blank" >http://kmwww.fjfi.cvut.cz/ddny/?loc=historie</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Delone Characteristics of Spectra of Cubic Complex Pisot Units
Original language description
For a real q > 1, Erdös, Joó and Komornik study distances of the consecutive points in the set X^m(q). The Pisot numbers play a crucial role for properties of Xm(q). We follow work of Za?mi who consideres X^m(gamma) with gamma being a complex Pisot number. For a class of cubic complex Pisot units we show that X^m(gamma) is a Delone set in the plane C and for the complex root of Y^3+Y^2+Y-1 we determine two parameters of the Delone set X^m(gamma) which are analogous to minimal and maximal distance for the real case X^m(q).
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů