A General Approximation of Quantum Graph Vertex Couplings by Scaled Schrodinger Operators on Thin Branched Manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F13%3A00209768" target="_blank" >RIV/68407700:21340/13:00209768 - isvavai.cz</a>
Alternative codes found
RIV/61389005:_____/13:00395997
Result on the web
<a href="http://link.springer.com/article/10.1007%2Fs00220-013-1699-9" target="_blank" >http://link.springer.com/article/10.1007%2Fs00220-013-1699-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00220-013-1699-9" target="_blank" >10.1007/s00220-013-1699-9</a>
Alternative languages
Result language
angličtina
Original language name
A General Approximation of Quantum Graph Vertex Couplings by Scaled Schrodinger Operators on Thin Branched Manifolds
Original language description
We demonstrate that any self-adjoint coupling in a quantum graph vertex can be approximated by a family of magnetic Schrodinger operators on a tubular network built over the graph. If such a manifold has a boundary, Neumann conditions are imposed at it.The procedure involves a local change of graph topology in the vicinity of the vertex; the approximation scheme constructed on the graph is subsequently 'lifted' to the manifold. For the corresponding operator a norm-resolvent convergence is proved, withthe natural identification map, as the tube diameters tend to zero.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Mathematical Physics
ISSN
0010-3616
e-ISSN
—
Volume of the periodical
322
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
21
Pages from-to
207-227
UT code for WoS article
000321466900009
EID of the result in the Scopus database
—