Palindromic richness for languages invariant under more symmetries
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F14%3A00210766" target="_blank" >RIV/68407700:21340/14:00210766 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21240/14:00210766
Result on the web
<a href="http://dx.doi.org/10.1016/j.tcs.2013.07.021" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2013.07.021</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2013.07.021" target="_blank" >10.1016/j.tcs.2013.07.021</a>
Alternative languages
Result language
angličtina
Original language name
Palindromic richness for languages invariant under more symmetries
Original language description
For a given finite group $G$ consisting of morphisms and antimorphisms of a free monoid $mathcal{A}^*$, we study infinite words with language closed under the group $G$. We focus on the notion of $G$-richness which describes words rich in generalized palindromic factors, i.e., in factors $w$ satisfying $Theta(w) = w$ for some antimorphism $Theta in G$. We give several equivalent descriptions which are generalizations of known characterizations of rich words (in the terms of classical palindromes) and show two examples of $G$-rich words.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Volume of the periodical
518
Issue of the periodical within the volume
Jan
Country of publishing house
GB - UNITED KINGDOM
Number of pages
22
Pages from-to
42-63
UT code for WoS article
000330823500005
EID of the result in the Scopus database
—