Orthogonal polynomials associated with Coulomb wave functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F14%3A00218171" target="_blank" >RIV/68407700:21340/14:00218171 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21240/14:00218171
Result on the web
<a href="http://dx.doi.org/10.1016/j.jmaa.2014.04.049" target="_blank" >http://dx.doi.org/10.1016/j.jmaa.2014.04.049</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2014.04.049" target="_blank" >10.1016/j.jmaa.2014.04.049</a>
Alternative languages
Result language
angličtina
Original language name
Orthogonal polynomials associated with Coulomb wave functions
Original language description
A new class of orthogonal polynomials associated with Coulomb wave functions is introduced. These polynomials play a role analogous to that the Lommel polynomials have in the theory of Bessel functions. The orthogonality measure for this new class is described in detail. In addition, the orthogonality measure problem is discussed on a more general level. Apart from this, various identities derived for the new orthogonal polynomials may be viewed as generalizations of certain formulas known from the theory of Bessel functions. A key role in these derivations is played by a Jacobi (tridiagonal) matrix J_L whose eigenvalues coincide with the reciprocal values of the zeros of the regular Coulomb wave function F_L(?,?). The spectral zeta function corresponding to the regular Coulomb wave function or, more precisely, to the respective tridiagonal matrix is studied as well.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-11058S" target="_blank" >GA13-11058S: Spectral analysis of operators and its applications in quantum mechanics</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Its Applications
ISSN
0022-247X
e-ISSN
—
Volume of the periodical
419
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
24
Pages from-to
231-254
UT code for WoS article
000338482600017
EID of the result in the Scopus database
—