Curvature-induced bound states in Robin waveguides and their asymptotical properties
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F14%3A00223406" target="_blank" >RIV/68407700:21340/14:00223406 - isvavai.cz</a>
Alternative codes found
RIV/61389005:_____/14:00440215
Result on the web
<a href="http://dx.doi.org/10.1063/1.4903184" target="_blank" >http://dx.doi.org/10.1063/1.4903184</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.4903184" target="_blank" >10.1063/1.4903184</a>
Alternative languages
Result language
angličtina
Original language name
Curvature-induced bound states in Robin waveguides and their asymptotical properties
Original language description
We analyze bound states of Robin Laplacian in infinite planar domains with a smooth boundary, in particular, their relations to the geometry of the latter. The domains considered have locally straight boundary being, for instance, locally deformed halfplanes or wedges, or infinite strips, alternatively they are the exterior of a bounded obstacle. In the situation when the Robin condition is strongly attractive, we derive a two-term asymptotic formula in which the next-to-leading term is determined by the extremum of the boundary curvature. We also discuss the non-asymptotic case of attractive boundary interaction and show that the discrete spectrum is nonempty if the domain is a local deformation of a halfplane or a wedge of angle less than ?, and it is void if the domain is concave.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
—
Volume of the periodical
55
Issue of the periodical within the volume
12
Country of publishing house
US - UNITED STATES
Number of pages
19
Pages from-to
"122101-1"-"122101-19"
UT code for WoS article
000347168000010
EID of the result in the Scopus database
—