Plane-parallel waves as duals of the flat background
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F15%3A00225001" target="_blank" >RIV/68407700:21340/15:00225001 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21240/15:00225001
Result on the web
<a href="http://iopscience.iop.org/0264-9381/32/3/035005/" target="_blank" >http://iopscience.iop.org/0264-9381/32/3/035005/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/0264-9381/32/3/035005" target="_blank" >10.1088/0264-9381/32/3/035005</a>
Alternative languages
Result language
angličtina
Original language name
Plane-parallel waves as duals of the flat background
Original language description
We give a classification of non-Abelian T-duals ('T' standing for topological or toroidal) of the flat metric in D = 4 dimensions with respect to the four-dimensional continuous subgroups of the Poincaré group. After dualizing the flat background, we identify the majority of dual models as conformal sigma models in plane-parallel wave backgrounds, most of them having torsion. We give their form in Brinkmann coordinates. We find, besides the plane-parallel waves, several diagonalizable curved metrics with nontrivial scalar curvature and torsion. Using the non-Abelian T-duality, we find general solutions of the classical field equations for all the sigma models in terms of d?Alembert solutions of the wave equation.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Classical and Quantum Gravity
ISSN
0264-9381
e-ISSN
—
Volume of the periodical
32
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
31
Pages from-to
—
UT code for WoS article
000349155600006
EID of the result in the Scopus database
2-s2.0-84921038724