Modification of Gaussian mixture models for data classification in high energy physics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F15%3A00225548" target="_blank" >RIV/68407700:21340/15:00225548 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1088/1742-6596/574/1/012150" target="_blank" >http://dx.doi.org/10.1088/1742-6596/574/1/012150</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1742-6596/574/1/012150" target="_blank" >10.1088/1742-6596/574/1/012150</a>
Alternative languages
Result language
angličtina
Original language name
Modification of Gaussian mixture models for data classification in high energy physics
Original language description
In high energy physics, we deal with demanding task of signal separation from background. The Model Based Clustering method involves the estimation of distribution mixture parameters via the Expectation-Maximization algorithm in the training phase and application of Bayes' rule in the testing phase. Modifications of the algorithm such as weighting, missing data processing, and overtraining avoidance will be discussed. Due to the strong dependence of the algorithm on initialization, genetic optimizationtechniques such as mutation, elitism, parasitism, and the rank selection of individuals will be mentioned. Data pre-processing plays a significant role for the subsequent combination of final discriminants in order to improve signal separation efficiency. Moreover, the results of the top quark separation from the Tevatron collider will be compared with those of standard multivariate techniques in high energy physics. Results from this study has been used in the measurement of the inclusi
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LG12020" target="_blank" >LG12020: Advanced statistical analysis and non-statistical separation techniques for physical processing detection in data sets sampled by means of elementary particle accelerators.</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics: Conference Series
ISSN
1742-6588
e-ISSN
—
Volume of the periodical
574
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
5
Pages from-to
—
UT code for WoS article
000352595600150
EID of the result in the Scopus database
2-s2.0-84921673841