Application of Markov processes to transport systems modelling
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F15%3A00235045" target="_blank" >RIV/68407700:21340/15:00235045 - isvavai.cz</a>
Result on the web
<a href="http://kis.agh.edu.pl/aktualnosci/2015/10/06/seminarium_kis_zjawisko_zycia_w_swietle_cybernetyki" target="_blank" >http://kis.agh.edu.pl/aktualnosci/2015/10/06/seminarium_kis_zjawisko_zycia_w_swietle_cybernetyki</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Application of Markov processes to transport systems modelling
Original language description
Mass Transport Systems represent a wide class of processes characterized, as the name suggests, by the transportation of masses from one place to another. The presentation focuses mainly on such processes, which are related to traffic or pedestrian flowmodelling, i.e., the transported masses are countable (vehicles, pedestrians). So defined processes can usually be interpreted as Markov chains with finite state space. Therefore, we can use developed theory of Markov processes to calculate stationary behaviour of wanted quantities, mean time to absorption, etc. But is such approach always useful or even possible? The presentation discusses, in which cases the Markov chain approach can be used directly and when it is beneficial to use some approximativeapproach.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA15-15049S" target="_blank" >GA15-15049S: Detection of stochastic universalities in non-equilibrium states of socio-physical systems by means of Random Matrix Theory</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů