Spectrum of a Dilated Honeycomb Network
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F15%3A00237930" target="_blank" >RIV/68407700:21340/15:00237930 - isvavai.cz</a>
Alternative codes found
RIV/61389005:_____/15:00443407
Result on the web
<a href="http://link.springer.com/article/10.1007%2Fs00020-014-2194-1" target="_blank" >http://link.springer.com/article/10.1007%2Fs00020-014-2194-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00020-014-2194-1" target="_blank" >10.1007/s00020-014-2194-1</a>
Alternative languages
Result language
angličtina
Original language name
Spectrum of a Dilated Honeycomb Network
Original language description
We analyze spectrum of Laplacian supported by a periodic honeycomb lattice with generally unequal edge lengths and a delta type coupling in the vertices. Such a quantum graph has nonempty point spectrum with compactly supported eigenfunctions provided all the edge lengths are commensurate. We derive conditions determining the continuous spectral component and show that existence of gaps may depend on number-theoretic properties of edge lengths ratios. The case when two of the three lengths coincide is discussed in detail.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-06818S" target="_blank" >GA14-06818S: Rigorous Methods in Quantum Dynamics: Geometry and Magnetic Fields</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Integral Equations and Operator Theory
ISSN
0378-620X
e-ISSN
—
Volume of the periodical
81
Issue of the periodical within the volume
4
Country of publishing house
CH - SWITZERLAND
Number of pages
23
Pages from-to
535-557
UT code for WoS article
000351551900005
EID of the result in the Scopus database
2-s2.0-84925521694