All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Experimental benchmarking of the code for Yb:YAG multi-slab gascooled laser system operating at cryogenic temperatures

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F15%3A00367390" target="_blank" >RIV/68407700:21340/15:00367390 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1117/12.2178395" target="_blank" >https://doi.org/10.1117/12.2178395</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1117/12.2178395" target="_blank" >10.1117/12.2178395</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Experimental benchmarking of the code for Yb:YAG multi-slab gascooled laser system operating at cryogenic temperatures

  • Original language description

    We present benchmarking of the home-made MATLAB model with the experimental data obtained for the 10 J/10 Hz cryogenically cooled multi-slab laser systems being developed in the Rutherford Appleton Laboratory, STFC, UK. The laser head of each system consists of four, 5 mm thick slabs separated by 2 mm gaps. Each slab is composed of 35 mm diameter Yb:YAG active material surrounded by 10 mm thick absorptive cladding. The slabs are pumped from both sides by diode arrays which in total deliver up to 40 kW of pump power in 1 ms pulses with a central wavelength of 940 nm, bandwidth 6 nm and pump spot 20 mm x 20 mm. The laser head has been modeled to predict gain in the slabs and the amplification of the seed beam for the temperatures of operation ranging from 100 K to 180 K. Output energy for different pump pulse durations has been calculated. It was determined that the maximum output energy obtained after 6 passes for the amplifier operating at the temperature of 120K and repetition rate 1 Hz was 9 J for the seed energy of 20 mJ. For higher temperature of 160 K the output energy was 8 J. The corresponding maximum single pass gain in the amplifier head was 8 for 120 K and 4 for 160 K. Results of the simulations are in a very good agreement with the measured data presented previous.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10306 - Optics (including laser optics and quantum optics)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proc. SPIE 9513, High-Power, High-Energy, and High-Intensity Laser Technology II

  • ISBN

    978-1-62841-634-3

  • ISSN

    0277-786X

  • e-ISSN

    1996-756X

  • Number of pages

    6

  • Pages from-to

  • Publisher name

    SPIE

  • Place of publication

    Bellingham (stát Washington)

  • Event location

    Prague

  • Event date

    Apr 13, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000356919900021