On q-non-extensive statistics with non-Tsallisian entropy
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F16%3A00233627" target="_blank" >RIV/68407700:21340/16:00233627 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0378437115009437" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0378437115009437</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.physa.2015.10.084" target="_blank" >10.1016/j.physa.2015.10.084</a>
Alternative languages
Result language
angličtina
Original language name
On q-non-extensive statistics with non-Tsallisian entropy
Original language description
We combine an axiomatics of Rényi with the q-deformed version of Khinchin axioms to obtain a measure of information (i.e., entropy) which accounts both for systems with embedded self-similarity and non-extensivity. We show that the entropy thus obtained is uniquely solved in terms of a one-parameter family of information measures. The ensuing maximal-entropy distribution is phrased in terms of a special function known as the Lambert W-function. We analyze the corresponding “high” and “low-temperature” asymptotics and reveal a non-trivial structure of the parameter space. Salient issues such as concavity and Schur concavity of the new entropy are also discussed.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-07983S" target="_blank" >GA14-07983S: Vacuum structure in Quantum Field Theories</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physica A: Statistical Mechanics and Its Applications
ISSN
0378-4371
e-ISSN
—
Volume of the periodical
444
Issue of the periodical within the volume
February
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
20
Pages from-to
808-827
UT code for WoS article
000366785900074
EID of the result in the Scopus database
2-s2.0-84946599650