Application of the level-set model with constraints in image segmentation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F16%3A00239147" target="_blank" >RIV/68407700:21340/16:00239147 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4208/nmtma.2015.m1418" target="_blank" >http://dx.doi.org/10.4208/nmtma.2015.m1418</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4208/nmtma.2015.m1418" target="_blank" >10.4208/nmtma.2015.m1418</a>
Alternative languages
Result language
angličtina
Original language name
Application of the level-set model with constraints in image segmentation
Original language description
We propose and analyze a constrained level-set method for semi-automatic image segmentation. Our level-set model with constraints on the level-set function enables us to specify which parts of the image lie inside respectively outside the segmented objects. Such a-priori information can be expressed in terms of upper and lower constraints prescribed for the level-set function. Constraints have the same conceptual meaning as initial seeds of the popular graph-cuts based methods for image segmentation. A numerical approximation scheme is based on the complementary-finite volumes method combined with the Projected successive over-relaxation method adopted for solving constrained linear complementarity problems. The advantage of the constrained level-set method is demonstrated on several artificial images as well as on cardiac MRI data.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Numerical Mathematics: Theory, Methods and Applications
ISSN
1004-8979
e-ISSN
—
Volume of the periodical
9
Issue of the periodical within the volume
1
Country of publishing house
CN - CHINA
Number of pages
22
Pages from-to
147-168
UT code for WoS article
000370276900006
EID of the result in the Scopus database
—