Cubature Formulas of Multivariate Polynomials Arising from Symmetric Orbit Functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F16%3A00302321" target="_blank" >RIV/68407700:21340/16:00302321 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3390/sym8070063" target="_blank" >http://dx.doi.org/10.3390/sym8070063</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym8070063" target="_blank" >10.3390/sym8070063</a>
Alternative languages
Result language
angličtina
Original language name
Cubature Formulas of Multivariate Polynomials Arising from Symmetric Orbit Functions
Original language description
The paper develops applications of symmetric orbit functions, known from irreducible representations of simple Lie groups, in numerical analysis. It is shown that these functions have remarkable properties which yield to cubature formulas, approximating a weighted integral of any function by a weighted finite sum of function values, in connection with any simple Lie group. The cubature formulas are specialized for simple Lie groups of rank two. An optimal approximation of any function by multivariate polynomials arising from symmetric orbit functions is discussed.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.30.0034" target="_blank" >EE2.3.30.0034: Support of inter-sectoral mobility and quality enhancement of research teams at Czech Technical University in Prague</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Symmetry
ISSN
2073-8994
e-ISSN
—
Volume of the periodical
8
Issue of the periodical within the volume
7
Country of publishing house
CH - SWITZERLAND
Number of pages
22
Pages from-to
—
UT code for WoS article
000380770600011
EID of the result in the Scopus database
—