Classical field theories from Hamiltonian constraint: Canonical equations of motion and local Hamilton-Jacobi theory
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F16%3A00306769" target="_blank" >RIV/68407700:21340/16:00306769 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1142/S0219887816500729" target="_blank" >http://dx.doi.org/10.1142/S0219887816500729</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0219887816500729" target="_blank" >10.1142/S0219887816500729</a>
Alternative languages
Result language
angličtina
Original language name
Classical field theories from Hamiltonian constraint: Canonical equations of motion and local Hamilton-Jacobi theory
Original language description
Classical field theory is considered as a theory of unparametrized surfaces embedded in a configuration space, which accommodates, in a symmetric way, spacetime positions and field values. Dynamics is defined by a (Hamiltonian) constraint between multivector-valued generalized momenta, and points in the configuration space. Starting from a variational principle, we derive local equations of motion, that is, differential equations that determine classical surfaces and momenta. A local Hamilton-Jacobi equation applicable in the field theory then follows readily. The general method is illustrated with three examples: non-relativistic Hamiltonian mechanics, De Donder-Weyl scalar field theory, and string theory.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-07983S" target="_blank" >GA14-07983S: Vacuum structure in Quantum Field Theories</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS
ISSN
0219-8878
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
6
Country of publishing house
SG - SINGAPORE
Number of pages
25
Pages from-to
—
UT code for WoS article
000378942500004
EID of the result in the Scopus database
2-s2.0-84964344853