A new estimate on complexity of generalized pseudostandard words
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F17%3A00302626" target="_blank" >RIV/68407700:21340/17:00302626 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A new estimate on complexity of generalized pseudostandard words
Original language description
Generalized pseudostandard words were introduced by de Luca and De Luca in 2006. In comparison to the palindromic and pseudopalindromic closure, only little is known about the generalized pseudopalindromic closure and the associated generalized pseudostandard words. We present a counterexample to Conjecture 43 from a paper by Blondin Massé et al. that estimated the complexity of binary generalized pseudostandard words as C(n) less or equal to 4n for all sufficiently large n. We conjecture that C(n) <6n for all natural numbers n.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA13-03538S" target="_blank" >GA13-03538S: Algorithms, Dynamics and Geometry of Numeration systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Integers: Electronic Journal of Combinatorial Number Theory
ISSN
1553-1732
e-ISSN
1553-1732
Volume of the periodical
17
Issue of the periodical within the volume
#A61
Country of publishing house
US - UNITED STATES
Number of pages
28
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—