Local Error Analysis and Comparison of the Swept- and Intersection-Based Remapping Methods
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F17%3A00308990" target="_blank" >RIV/68407700:21340/17:00308990 - isvavai.cz</a>
Result on the web
<a href="https://www.cambridge.org/core/journals/communications-in-computational-physics/article/div-classtitlelocal-error-analysis-and-comparison-of-the-swept-and-intersection-based-remapping-methodsdiv/7E9FDB586152939AA11C343863A45A1C" target="_blank" >https://www.cambridge.org/core/journals/communications-in-computational-physics/article/div-classtitlelocal-error-analysis-and-comparison-of-the-swept-and-intersection-based-remapping-methodsdiv/7E9FDB586152939AA11C343863A45A1C</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4208/cicp.OA-2015-0021" target="_blank" >10.4208/cicp.OA-2015-0021</a>
Alternative languages
Result language
angličtina
Original language name
Local Error Analysis and Comparison of the Swept- and Intersection-Based Remapping Methods
Original language description
In this paper, the numerical error of two widely used methods for remapping of discrete quantities from one computational mesh to another is investigated. We compare the intuitive, but resource intensive method utilizing intersections of computational cells with the faster and simpler swept-region-based method. Both algorithms are formally second order accurate, however, they are known to produce slightly different quantity profiles in practical applications. The second-order estimate of the error formula is constructed algebraically for both algorithms so that their local accuracy can be evaluated. This general estimate is then used to assess the dependence of the performance of both methods on parameters such as the second derivatives of the remapped distribution, mesh geometry or mesh movement. Due to the complexity of such analysis, it is performed on a set of simplified elementary mesh patterns such as cell corner expansion, rotation or shear. On selected numerical tests it is demonstrated that the swept-based method can distort a symmetric quantity distribution more substantially than the intersection-based approach when the computational mesh moves in an unsuitable direction.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA14-21318S" target="_blank" >GA14-21318S: Lagrangian and ALE methods for mechanics of compressible fluids and elastic-plastic solids</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Computational Physics
ISSN
1815-2406
e-ISSN
1991-7120
Volume of the periodical
21
Issue of the periodical within the volume
2
Country of publishing house
CN - CHINA
Number of pages
33
Pages from-to
526-558
UT code for WoS article
000395527500009
EID of the result in the Scopus database
2-s2.0-85012919515