All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Bethe Vectors for Composite Models with gl(2|1) and gl(1|2) Supersymmetry

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F17%3A00311751" target="_blank" >RIV/68407700:21340/17:00311751 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.emis.de/journals/SIGMA/2017/015/" target="_blank" >https://www.emis.de/journals/SIGMA/2017/015/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3842/SIGMA.2017.015" target="_blank" >10.3842/SIGMA.2017.015</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Bethe Vectors for Composite Models with gl(2|1) and gl(1|2) Supersymmetry

  • Original language description

    Supersymmetric composite generalized quantum integrable models solvable by the algebraic Bethe ansatz are studied. Using a coproduct in the bialgebra of monodromy matrix elements and their action on Bethe vectors, formulas for Bethe vectors in the composite models with supersymmetry based on the super-Yangians Y[gl(2|1)] and Y[gl(1|2)] are derived.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

  • ISSN

    1815-0659

  • e-ISSN

    1815-0659

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    March

  • Country of publishing house

    UA - UKRAINE

  • Number of pages

    17

  • Pages from-to

  • UT code for WoS article

    000396322300001

  • EID of the result in the Scopus database

    2-s2.0-85016076725