All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Bound-preserving remapping of staggered quantities for multi-material ALE methods

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F17%3A00312481" target="_blank" >RIV/68407700:21340/17:00312481 - isvavai.cz</a>

  • Result on the web

    <a href="http://aip.scitation.org/doi/10.1063/1.4992178" target="_blank" >http://aip.scitation.org/doi/10.1063/1.4992178</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.4992178" target="_blank" >10.1063/1.4992178</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Bound-preserving remapping of staggered quantities for multi-material ALE methods

  • Original language description

    In Arbitrary Lagrangian-Eulerian (ALE) methods, remap is one of the key steps necessary for conservative interpolation of all fluid quantities between the computational meshes. We are mostly interested in the remap in the case of multi-material simulations, allowing to contain multiple materials in each computational cell, preventing the quantities from excessive diffusion due to averaging of different materials. We present a remapping algorithm treating all fluid quantities consistently and in a bound-preserving manner in a flux form. Its features are demonstrated on selected multi-material static and hydrodynamic tests.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    <a href="/en/project/GA14-21318S" target="_blank" >GA14-21318S: Lagrangian and ALE methods for mechanics of compressible fluids and elastic-plastic solids</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    AIP Conference Proceedings

  • ISBN

    978-0-7354-1538-6

  • ISSN

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

  • Publisher name

    AIP Publishing

  • Place of publication

    Melville, NY

  • Event location

    Rhodes

  • Event date

    Sep 19, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000410159800031