All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Equivalence groupoid of a class of variable coefficient Korteweg-de Vries equations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F17%3A00313931" target="_blank" >RIV/68407700:21340/17:00313931 - isvavai.cz</a>

  • Result on the web

    <a href="http://scitation.aip.org/content/aip/journal/jmp/58/10/10.1063/1.5004973" target="_blank" >http://scitation.aip.org/content/aip/journal/jmp/58/10/10.1063/1.5004973</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.5004973" target="_blank" >10.1063/1.5004973</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Equivalence groupoid of a class of variable coefficient Korteweg-de Vries equations

  • Original language description

    We classify the admissible transformations in a class of variable coefficient Korteweg–de Vries equations. As a result, a full description of the structure of the equivalence groupoid of the class is given. The class under study is partitioned into six disjoint normalized subclasses. The widest possible equivalence group for each subclass is found which appears to be generalized extended in five cases. Ways for improvement of transformational properties of the subclasses are proposed using gaugings of arbitrary elements and mapping between classes. The group classification of one of the subclasses is carried out as an illustrative example.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Physics

  • ISSN

    0022-2488

  • e-ISSN

    1089-7658

  • Volume of the periodical

    58

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    "101504-1"-"101504-12"

  • UT code for WoS article

    000414226700004

  • EID of the result in the Scopus database

    2-s2.0-85030646055