All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Application of rotational spectrum for correlation dimension estimation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F17%3A00316537" target="_blank" >RIV/68407700:21340/17:00316537 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.chaos.2017.04.026" target="_blank" >http://dx.doi.org/10.1016/j.chaos.2017.04.026</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.chaos.2017.04.026" target="_blank" >10.1016/j.chaos.2017.04.026</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Application of rotational spectrum for correlation dimension estimation

  • Original language description

    Correlation dimension is one of the many types of fractal dimension. It is usually estimated from a finite number of points from a fractal set using correlation sum and regression in a log-log plot. However, this traditional approach requires a large amount of data and often leads to a biased estimate. The novel approach proposed here can be used for the estimation of the correlation dimension in a frequency domain using the power spectrum of the investigated fractal set. This work presents a new spectral characteristic called “rotational spectrum” and shows its properties in relation to the correlation dimension. The theoretical results can be directly applied to uniformly distributed samples from a given point set. The efficiency of the proposed method was tested on sets with a known correlation dimension using Monte Carlo simulation. The simulation results showed that this method can provide an unbiased estimation for many types of fractal sets.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    CHAOS SOLITONS & FRACTALS

  • ISSN

    0960-0779

  • e-ISSN

    1873-2887

  • Volume of the periodical

    99

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    7

  • Pages from-to

    256-262

  • UT code for WoS article

    000402945300033

  • EID of the result in the Scopus database

    2-s2.0-85017518743