On the Uniqueness Theorem for Pseudo-Additive Entropies
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F17%3A00317840" target="_blank" >RIV/68407700:21340/17:00317840 - isvavai.cz</a>
Result on the web
<a href="http://www.mdpi.com/1099-4300/19/11/605" target="_blank" >http://www.mdpi.com/1099-4300/19/11/605</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/e19110605" target="_blank" >10.3390/e19110605</a>
Alternative languages
Result language
angličtina
Original language name
On the Uniqueness Theorem for Pseudo-Additive Entropies
Original language description
The aim of this paper is to show that the Tsallis-type (q-additive) entropic chain rule allows for a wider class of entropic functionals than previously thought. In particular, we point out that the ensuing entropy solutions (e.g., Tsallis entropy) can be determined uniquely only when one fixes the prescription for handling conditional entropies. By using the concept of Kolmogorov-Nagumo quasi-linear means, we prove this with the help of Darotzy's mapping theorem. Our point is further illustrated with a number of explicit examples. Other salient issues, such as connections of conditional entropies with the de Finetti-Kolmogorov theorem for escort distributions and with Landsberg's classification of non-extensive thermodynamic systems are also briefly discussed.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
<a href="/en/project/GF17-33812L" target="_blank" >GF17-33812L: An information-theoretical perspective on complex systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Entropy
ISSN
1099-4300
e-ISSN
1099-4300
Volume of the periodical
19
Issue of the periodical within the volume
11
Country of publishing house
CH - SWITZERLAND
Number of pages
11
Pages from-to
—
UT code for WoS article
000419006900039
EID of the result in the Scopus database
2-s2.0-85034217915