All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cramer-Rao-Induced Bound for Interference-to-Signal Ratio Achievable through Non-Gaussian Independent Component Extraction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F17%3A00324910" target="_blank" >RIV/68407700:21340/17:00324910 - isvavai.cz</a>

  • Alternative codes found

    RIV/46747885:24220/17:00004539

  • Result on the web

    <a href="http://dx.doi.org/10.1109/CAMSAP.2017.8313097" target="_blank" >http://dx.doi.org/10.1109/CAMSAP.2017.8313097</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CAMSAP.2017.8313097" target="_blank" >10.1109/CAMSAP.2017.8313097</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cramer-Rao-Induced Bound for Interference-to-Signal Ratio Achievable through Non-Gaussian Independent Component Extraction

  • Original language description

    This paper deals with the Cramér-Rao Lower Bound (CRLB) for a novel blind source separation method called Independent Component Extraction (ICE). Compared to Independent Component Analysis (ICA), ICE aims to extract only one independent signal from a linear mixture. The target signal is assumed to be non-Gaussian, while the other signals, which are not separated, are modeled as a Gaussian mixture. A CRLBinduced Bound (CRIB) for Interference-to-Signal Ratio (ISR) is derived. Numerical simulations compare the CRIB with the performance of an ICA and an ICE algorithm. The results show good agreement between the theory and the empirical results.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP) 2017

  • ISBN

    978-1-5386-1251-4

  • ISSN

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

  • Publisher name

    IEEE Signal Processing Society

  • Place of publication

    Piscataway

  • Event location

    Curacao

  • Event date

    Dec 11, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000428438100041