Parametric Raman anti-Stokes laser at 503 nm with phase-matched collinear beam interaction of orthogonally polarized Raman components in calcite under 532 nm 20 ps laser pumping
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F17%3A00328883" target="_blank" >RIV/68407700:21340/17:00328883 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1117/12.2268410" target="_blank" >http://dx.doi.org/10.1117/12.2268410</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1117/12.2268410" target="_blank" >10.1117/12.2268410</a>
Alternative languages
Result language
angličtina
Original language name
Parametric Raman anti-Stokes laser at 503 nm with phase-matched collinear beam interaction of orthogonally polarized Raman components in calcite under 532 nm 20 ps laser pumping
Original language description
Lasers based on stimulated-Raman-scattering process can be used for the frequency-conversion to the wavelengths that are not readily available from solid-state lasers. Parametric Raman lasers allow generation of not only Stokes, but also anti-Stokes components. However, practically all the known crystalline parametric Raman anti-Stokes lasers have very low conversion efficiencies of about 1 % at theoretically predicted values of up to 40 % because of relatively narrow angular tolerance of phase matching in comparison with angular divergence of the interacting beams. In our investigation, to widen the angular tolerance of four-wave mixing and to obtain high conversion efficiency into the anti-Stokes wave we propose and study a new scheme of the parametric Raman anti-Stokes laser at 503 nm with phase-matched collinear beam interaction of orthogonally polarized Raman components in calcite under 532 nm 20 ps laser pumping. We use only one 532-nm laser source to pump the Raman-active calcite crystal oriented at the phase matched angle for orthogonally polarized Raman components four-wave mixing. Additionally, we split the 532-nm laser radiation into the orthogonally polarized components entering to the Raman-active calcite crystal at the certain incidence angles to fulfill the tangential phase matching compensating walk-off of extraordinary waves for collinear beam interaction in the crystal with the widest angular tolerance of four-wave mixing. For the first time the highest 503-nm anti-Stokes conversion efficiency of 30 % close to the theoretical limit of about 40 % at overall optical efficiency of the parametric Raman anti-Stokes generation of up to 3.5 % in calcite is obtained due to realization of tangential phase matching insensitive to the angular mismatch.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20201 - Electrical and electronic engineering
Result continuities
Project
<a href="/en/project/GA16-10019S" target="_blank" >GA16-10019S: Bragg fibers for delivery of laser radiation in a spectral region 1900-2300 nm</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proc. SPIE 10228
ISBN
9781510609587
ISSN
—
e-ISSN
1996-756X
Number of pages
15
Pages from-to
—
Publisher name
SPIE
Place of publication
Baltimore
Event location
Praha
Event date
Apr 24, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000407115600020