Quantum Markov processes: From attractor structure to explicit forms of asymptotic states
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F18%3A00325008" target="_blank" >RIV/68407700:21340/18:00325008 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1140%2Fepjp%2Fi2018-12109-8" target="_blank" >https://link.springer.com/article/10.1140%2Fepjp%2Fi2018-12109-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1140/epjp/i2018-12109-8" target="_blank" >10.1140/epjp/i2018-12109-8</a>
Alternative languages
Result language
angličtina
Original language name
Quantum Markov processes: From attractor structure to explicit forms of asymptotic states
Original language description
Markov processes play an important role in physics and in particular in the theory of open systems. In this paper we study the asymptotic evolution of trace-nonincreasing homogeneous quantum Markov processes (both types, discrete quantum Markov chains and continuous quantum Markov dynamical semigroups) equipped with a subinvariant faithful state in the Schrödinger and the Heisenberg picture. We derive a fundamental theorem specifying the structure of the asymptotics and uncover a rich set of transformations between attractors of quantum Markov processes in both pictures. Moreover, we generalize the structure theorem derived earlier for quantum Markov chains to quantum Markov dynamical semigroups showing how the internal structure of generators of quantum Markov processes determines attractors in both pictures. Based on these results we provide two characterizations of all asymptotic and stationary states, both strongly reminding in form the well-known Gibbs states of statistical mechanics. We prove that the dynamics within the asymptotic space is of unitary type, i.e. quantum Markov processes preserve a certain scalar product of operators from the asymptotic space, but there is no corresponding unitary evolution on the original Hilbert space of pure states. Finally simple examples illustrating the derived theory are given.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
<a href="/en/project/GA16-09824S" target="_blank" >GA16-09824S: Equilibrium formation in quantum networks</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
EUROPEAN PHYSICAL JOURNAL PLUS
ISSN
2190-5444
e-ISSN
—
Volume of the periodical
133
Issue of the periodical within the volume
310
Country of publishing house
DE - GERMANY
Number of pages
17
Pages from-to
—
UT code for WoS article
000440760100002
EID of the result in the Scopus database
2-s2.0-85052108746