Ruled strips with asymptotically diverging twisting
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F18%3A00326295" target="_blank" >RIV/68407700:21340/18:00326295 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00023-018-0684-4" target="_blank" >https://doi.org/10.1007/s00023-018-0684-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00023-018-0684-4" target="_blank" >10.1007/s00023-018-0684-4</a>
Alternative languages
Result language
angličtina
Original language name
Ruled strips with asymptotically diverging twisting
Original language description
We consider the Dirichlet Laplacian in a two-dimensional strip composed of segments translated along a straight line with respect to a rotation angle with velocity diverging at infinity. We show that this model exhibits a “raise of dimension” at infinity leading to an essential spectrum determined by an asymptotic three-dimensional tube of annular cross section. If the cross section of the asymptotic tube is a disc, we also prove the existence of discrete eigenvalues below the essential spectrum.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA18-08835S" target="_blank" >GA18-08835S: Quantum mechanics with non-self-adjoint operators: transition from spectra to pseudospectra</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annales Henri Poincare
ISSN
1424-0637
e-ISSN
1424-0661
Volume of the periodical
19
Issue of the periodical within the volume
7
Country of publishing house
CH - SWITZERLAND
Number of pages
18
Pages from-to
2069-2086
UT code for WoS article
—
EID of the result in the Scopus database
—