All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Surface modification of 99mTC-HAp-NPs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F18%3A00327227" target="_blank" >RIV/68407700:21340/18:00327227 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Surface modification of 99mTC-HAp-NPs

  • Original language description

    Hydroxyapatite (HAp) is one the main mineral bones and teeth components and biocompatible material used in orthopaedic implants. It might be used as a drug carrier in diagnostics and treatment of cancer. The sufficient in vivo stability without fast aggregation of the Hap-NPs is required for theranostic application. Various phosphonic acids were studied as potential HAp stabilisers and technetium-99m chelator. Hydroxyapatite nanoparticles were prepared by precipitation of Ca(NO3)2 with (NH4)2HPO4 at pH=11. The precipitate was washed, lyophilized and crushed. Stabilized samples were prepared from already-made HAp-NPs by ultrasound dispergation in corresponding phosphonic acid solution in water (1 mg/ml). The hydrodynamic size distributions of studied stabilized particles were determined using dynamic light scattering (Zetasizer, Malvern, UK). Samples were labelled with technetium-99m eluted from 99Mo/99mTc generator (DRYTEC, GE Healthcare). The labelling yield ranged to about 90%. Subsequent in vitro stability studies were carried out in bovine serum, bovine plasma, saline and 5% albumin solution. Measurements of released activity revealed that samples exhibit the highest stability in saline (released activity of about 10%). The lowest stability was shown to be in blood plasma (released activity of about 20%).

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10402 - Inorganic and nuclear chemistry

Result continuities

  • Project

    <a href="/en/project/NV16-30544A" target="_blank" >NV16-30544A: New multistage nanodiagnostics for cancer imaging and prediction of antiangiogenic therapy efficacy</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů