All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fatigue crack growth in plasma sprayed refractory materials

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F18%3A00347441" target="_blank" >RIV/68407700:21340/18:00347441 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fatigue crack growth in plasma sprayed refractory materials

  • Original language description

    Fatigue crack growth in self-standing plasma sprayed tungsten and molybdenum beams with artificially introduced notches subjected to pure bending was studied. Beams width, thickness and length was 4 mm, 3 mm and 32 mm respectively. Fatigue crack length was measured using the differential compliance method and fatigue crack growth rate was established as a function of stress intensity factor. Unusual crack opening under compressive loading part of the cycle was detected. Fractographic analysis revealed the respective crack formation mechanisms. At low crack propagation rates, the fatigue crack growth takes place by intergranular splat fracture and splat decohesion for Mo coating. In W coating, intergranular splat fracture and void interconnection formed the fatigue crack. Frequently, the crack deflected from the notch plane being attracted to stress concentrators formed by porosity. At higher values of the stress intensity factor, the splat intergranular cracking become more common and the crack propagated more perpendicularly to the specimen surface.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    <a href="/en/project/GB14-36566G" target="_blank" >GB14-36566G: Multidisciplinary research centre for advanced materials</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the International Thermal Spray Conference

  • ISBN

    978-1-5108-8040-5

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    140-147

  • Publisher name

    DVS and ASM International

  • Place of publication

    Materials Park, OH

  • Event location

    Orlando, FL

  • Event date

    May 7, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000550735700022