On surface area and length preserving flows of closed curves on a given surface
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00320171" target="_blank" >RIV/68407700:21340/19:00320171 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-96415-7_24" target="_blank" >http://dx.doi.org/10.1007/978-3-319-96415-7_24</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-96415-7_24" target="_blank" >10.1007/978-3-319-96415-7_24</a>
Alternative languages
Result language
angličtina
Original language name
On surface area and length preserving flows of closed curves on a given surface
Original language description
In this paper we investigate two non-local geometric geodesic curvature driven flows of closed curves preserving either their enclosed surface area or their total length on a given two-dimensional surface. The method is based on projection of evolved curves on a surface to the underlying plane. For such a projected flow we construct the normal velocity and the external nonlocal force. The evolving family of curves is parametrized by a solution to the fully nonlinear parabolic equation for which we derive a flowing finite volume approximation numerical scheme. Finally, we present various computational examples of evolution of the surface area and length preserving flows of surface curves.We furthermore analyse the experimental order of convergence. It turns out that the numerical scheme is of the second order of convergence.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GB14-36566G" target="_blank" >GB14-36566G: Multidisciplinary research centre for advanced materials</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Numerical Mathematics and Advanced Applications ENUMATH 2017
ISBN
9783319964140
ISSN
1439-7358
e-ISSN
—
Number of pages
9
Pages from-to
279-287
Publisher name
Springer
Place of publication
Basel
Event location
Voss
Event date
Sep 25, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—