All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Temperature Dependence of Cr:ZnSe Active Medium Spectral and Laser Properties

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00334049" target="_blank" >RIV/68407700:21340/19:00334049 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1117/12.2520722" target="_blank" >http://dx.doi.org/10.1117/12.2520722</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1117/12.2520722" target="_blank" >10.1117/12.2520722</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Temperature Dependence of Cr:ZnSe Active Medium Spectral and Laser Properties

  • Original language description

    The interest in the development of coherent mid-infrared radiation sources is caused by its potential application in medicine, spectroscopy, laser remote sensing of the atmosphere, metrology, and in many other fields of interest. This study presents temperature dependence of spectral properties of Cr:ZnSe laser active medium in range of 78-380 K. The temperature influence on the absorption, fluorescence and oscillation spectra were investigated in detail. While heating the Cr:ZnSe crystal from 78K to 380 K, the absorption peak maximum has shifted for 65nm toward a shorter wavelength from 1813nm to 1748nm together with the absorption spectrum broadening from 262nm to 373nm and decreasing the absorption coefficient. The FWHM of the fluorescence spectrum was broadened from 280nm (2030-2310 nm) to 488nm (1896-2384 nm) when the temperature of active medium was increasing. Pulsed laser operation from Cr:ZnSe active medium longitudinally pumped by an Er:YLF laser at 1735nm was investigated. The temperature dependence of Cr:ZnSe laser output energy and oscillation spectrum were studied. The highest output energy was 3.84mJ at 78K which together with the FWHM pulse duration of 200 us corresponds to the power of 19mW. The laser radiation emission was observed at three wavelength bands which intensity was changing during the increase of crystal temperature. However, the oscillation band around wavelength of ~2360nm occurred for all measured temperatures. As a result, by cooling the system, the wavelength of maximum absorption is being shifted to the longer wavelengths as well as the wavelength of maximum fluorescence spectrum intensity.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

    <a href="/en/project/GA18-11954S" target="_blank" >GA18-11954S: Optimization of the solid-state laser active materials for spectral range from near- up to mid-infrared</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proc. SPIE 11033, High-Power, High-Energy, and High-Intensity Laser Technology IV

  • ISBN

    978-1-5106-2732-1

  • ISSN

    0277-786X

  • e-ISSN

    1996-756X

  • Number of pages

    8

  • Pages from-to

  • Publisher name

    SPIE

  • Place of publication

    Bellingham

  • Event location

    Praha

  • Event date

    Apr 1, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000483017000018