All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Residual Neural Networks in High Energy Physics

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00335962" target="_blank" >RIV/68407700:21340/19:00335962 - isvavai.cz</a>

  • Result on the web

    <a href="http://gams.fjfi.cvut.cz/spms2019" target="_blank" >http://gams.fjfi.cvut.cz/spms2019</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Residual Neural Networks in High Energy Physics

  • Original language description

    Classification is a crucial step in high energy physics data analysis. As many reconstruction steps in high energy physics are similar to image pattern recognition tasks, we explore the potential of appropriate deep learning techniques in high energy physics (HEP). In particular, convolutional neural networks (CNN) can be used to extract characteristic features from image pixelmaps at different scales and use these features for particle identification. That is why the CNN techniques can be used for interaction classification in neutrino experiments. In this paper, we summarize the results of our research assignment [1]. We present several classification models with different CNN architectures and show the results for particle classification task on a provided HEP dataset.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10303 - Particles and field physics

Result continuities

  • Project

    <a href="/en/project/LM2015068" target="_blank" >LM2015068: Research Infrastructure for Fermilab Experiments</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of SPMS 2019 - Stochastic and Physical Monitoring Systems

  • ISBN

    978-80-01-06659-1

  • ISSN

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    65-71

  • Publisher name

    Česká technika - nakladatelství ČVUT

  • Place of publication

    Praha

  • Event location

    Dobřichovice

  • Event date

    Jun 20, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article