Statistical rigidity of vehicular streams-theory versus reality
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00336520" target="_blank" >RIV/68407700:21340/19:00336520 - isvavai.cz</a>
Alternative codes found
RIV/62690094:18470/19:50021386
Result on the web
<a href="https://doi.org/10.1088/2399-6528/ab0d47" target="_blank" >https://doi.org/10.1088/2399-6528/ab0d47</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/2399-6528/ab0d47" target="_blank" >10.1088/2399-6528/ab0d47</a>
Alternative languages
Result language
angličtina
Original language name
Statistical rigidity of vehicular streams-theory versus reality
Original language description
By means of standardized statistical tests applied to empirical traffic data (recorded at the Expressway R1 in Prague, Czech Republic) we verify a hypothesis that vehicular clearances are distributed via Generalized Inverse Gaussian distribution (GIG) g(x) proportional to e(-betax)e(-lambda x) (x > 0, beta >= 0, lambda > 0). We formalize mathe- matical theory explaining recent results obtained by means of advanced statistical analysis applied to vehicular/pedestrian microstructure. For these purposes we use (and generalize) approaches applied in the theory of counting processes. Quantities standardly analyzed in vehicular headway modeling (headway, multi-headway, interval frequency, and statistical rigidity) are here reformulated into formal mathematical definitions and then analytical predictions for statistical rigidity of particle systems with GIG-distributed headways are compared with empirical behavior. We show that a connection between clearance distribution and rigidity in real-road data is not tight as in theoretical structures. This discrepancy is explained as a consequence of the fact that interaction rules acting in vehicular systems (unlike level processes studied) are not short-ranged, which supports a hypothesis that mutual interactions exist among several succeeding cars (as investigated in Krbalek et al 2018 Physica A 491, 112).
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GA15-15049S" target="_blank" >GA15-15049S: Detection of stochastic universalities in non-equilibrium states of socio-physical systems by means of Random Matrix Theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics Communications
ISSN
2399-6528
e-ISSN
—
Volume of the periodical
3
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
14
Pages from-to
—
UT code for WoS article
000463117800020
EID of the result in the Scopus database
2-s2.0-85078348750