Discrete Orthogonality of Bivariate Polynomials of A(2), C-2 and G(2)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00338522" target="_blank" >RIV/68407700:21340/19:00338522 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.3390/sym11060751" target="_blank" >https://doi.org/10.3390/sym11060751</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym11060751" target="_blank" >10.3390/sym11060751</a>
Alternative languages
Result language
angličtina
Original language name
Discrete Orthogonality of Bivariate Polynomials of A(2), C-2 and G(2)
Original language description
We develop discrete orthogonality relations on the finite sets of the generalized Chebyshev nodes related to the root systems A2, C2 and G2. The orthogonality relations are consequences of orthogonality of four types of Weyl orbit functions on the fragments of the dual weight lattices. A uniform recursive construction of the polynomials as well as explicit presentation of all data needed for the discrete orthogonality relations allow practical implementation of the related Fourier methods. The polynomial interpolation method is developed and exemplified.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10100 - Mathematics
Result continuities
Project
<a href="/en/project/GA19-19535S" target="_blank" >GA19-19535S: Fourier methods of special functions of affine Weyl groups</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Symmetry
ISSN
2073-8994
e-ISSN
2073-8994
Volume of the periodical
11
Issue of the periodical within the volume
6
Country of publishing house
CH - SWITZERLAND
Number of pages
26
Pages from-to
—
UT code for WoS article
000475703000026
EID of the result in the Scopus database
2-s2.0-85068042464