Mass lumping for MHFEM in two phase flow problems in porous media
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00348454" target="_blank" >RIV/68407700:21340/19:00348454 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-96415-7_58" target="_blank" >http://dx.doi.org/10.1007/978-3-319-96415-7_58</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-96415-7_58" target="_blank" >10.1007/978-3-319-96415-7_58</a>
Alternative languages
Result language
angličtina
Original language name
Mass lumping for MHFEM in two phase flow problems in porous media
Original language description
This work deals with testing of the Mixed-Hybrid Finite Element Method (MHFEM) for solving two phase flow problems in porous media. We briefly describe the numerical method, it’s implementation, and benchmark problems. First, the method is verified using test problems in homogeneous porous media in 2D and 3D. Results show that the method is convergent and the experimental order of convergence is slightly less than one. However, for the problem in heterogeneous porous media, the method produces oscillations at the interface between different porous media and we demonstrate that these oscillations are not caused by the mesh resolution. To overcome these oscillations, we use the mass lumping technique which eliminates the oscillations at the interface. Tests on the problems in homogeneous porous media show that although the mass lumping technique slightly decreases the accuracy of the method, the experimental order of convergence remains the same.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA17-06759S" target="_blank" >GA17-06759S: Investigation of shallow subsurface flow with phase transitions</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Numerical Mathematics and Advanced Applications ENUMATH 2017
ISBN
9783319964140
ISSN
1439-7358
e-ISSN
—
Number of pages
9
Pages from-to
635-643
Publisher name
Springer
Place of publication
Basel
Event location
Voss
Event date
Sep 25, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—