Cylindrical type integrable classical systems in a magnetic field
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F20%3A00341063" target="_blank" >RIV/68407700:21340/20:00341063 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1088/1751-8121/ab64a6" target="_blank" >https://doi.org/10.1088/1751-8121/ab64a6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8121/ab64a6" target="_blank" >10.1088/1751-8121/ab64a6</a>
Alternative languages
Result language
angličtina
Original language name
Cylindrical type integrable classical systems in a magnetic field
Original language description
We present all second order classical integrable systems of the cylindrical type in a three dimensional Euclidean space E3 with a nontrivial magnetic field. The Hamiltonian and integrals of motion have the form. Infinite families of such systems are found, in general depending on arbitrary functions or parameters. This leaves open the possibility of finding superintegrable systems among the integrable ones (i.e. systems with 1 or 2 additional independent integrals).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA17-11805S" target="_blank" >GA17-11805S: Superintegrable systems in magnetic fields in three spatial dimensions</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics A: Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
1751-8121
Volume of the periodical
53
Issue of the periodical within the volume
8
Country of publishing house
GB - UNITED KINGDOM
Number of pages
31
Pages from-to
—
UT code for WoS article
000537476000001
EID of the result in the Scopus database
2-s2.0-85081336263