Complementary symmetric Rote sequences: the critical exponent and the recurrence function
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F20%3A00341424" target="_blank" >RIV/68407700:21340/20:00341424 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.23638/DMTCS-22-1-20" target="_blank" >https://doi.org/10.23638/DMTCS-22-1-20</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23638/DMTCS-22-1-20" target="_blank" >10.23638/DMTCS-22-1-20</a>
Alternative languages
Result language
angličtina
Original language name
Complementary symmetric Rote sequences: the critical exponent and the recurrence function
Original language description
We determine the critical exponent and the recurrence function of complementary symmetric Rote sequences. The formulae are expressed in terms of the continued fraction expansions associated with the S-adic representations of the corresponding standard Sturmian sequences. The results are based on a thorough study of return words to bispecial factors of Sturmian sequences. Using the formula for the critical exponent, we describe all complementary symmetric Rote sequences with the critical exponent less than or equal to 3, and we show that there are uncountably many complementary symmetric Rote sequences with the critical exponent less than the critical exponent of the Fibonacci sequence. Our study is motivated by a conjecture on sequences rich in palindromes formulated by Baranwal and Shallit. Its recent solution by Curie, Mol, and Rampersad uses two particular complementary symmetric Rote sequences.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Mathematics and Theoretical Computer Science
ISSN
1462-7264
e-ISSN
1365-8050
Volume of the periodical
22
Issue of the periodical within the volume
1
Country of publishing house
FR - FRANCE
Number of pages
33
Pages from-to
—
UT code for WoS article
000561191500019
EID of the result in the Scopus database
—