Morphisms generating antipalindromic words
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F20%3A00342386" target="_blank" >RIV/68407700:21340/20:00342386 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.ejc.2020.103160" target="_blank" >https://doi.org/10.1016/j.ejc.2020.103160</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejc.2020.103160" target="_blank" >10.1016/j.ejc.2020.103160</a>
Alternative languages
Result language
angličtina
Original language name
Morphisms generating antipalindromic words
Original language description
We introduce two classes of morphisms over the alphabet A={0,1} whose fixed points contain infinitely many antipalindromic factors. An antipalindrome is a finite word invariant under the action of the antimorphism E: {0,1}*->{0,1}*, defined by E(w_1...w_n)=(1-w_n)...(1-w_1). We conjecture that these two classes contain all morphisms (up to conjugation) which generate infinite words with infinitely many antipalindromes. This is an analogue to the famous HKS conjecture concerning infinite words containing infinitely many palindromes. We prove our conjecture for two special classes of morphisms, namely (i) uniform morphisms and (ii) morphisms with fixed points containing also infinitely many palindromes.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
European Journal of Combinatorics
ISSN
0195-6698
e-ISSN
1095-9971
Volume of the periodical
89
Issue of the periodical within the volume
October
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
19
Pages from-to
—
UT code for WoS article
000556551000018
EID of the result in the Scopus database
2-s2.0-85086436708