Absence of eigenvalues of non-self-adjoint Robin Laplacians on the half-space
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F20%3A00344236" target="_blank" >RIV/68407700:21340/20:00344236 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1112/plms.12327" target="_blank" >https://doi.org/10.1112/plms.12327</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1112/plms.12327" target="_blank" >10.1112/plms.12327</a>
Alternative languages
Result language
angličtina
Original language name
Absence of eigenvalues of non-self-adjoint Robin Laplacians on the half-space
Original language description
By developing the method of multipliers, we establish sufficient conditions which guarantee the total absence of eigenvalues of the Laplacian in the half-space, subject to variable complex Robin boundary conditions. As a further application of this technique, uniform resolvent estimates are derived under the same assumptions on the potential. Some of the results are new even in the self-adjoint setting, where we obtain quantum-mechanically natural conditions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-08835S" target="_blank" >GA18-08835S: Quantum mechanics with non-self-adjoint operators: transition from spectra to pseudospectra</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the London Mathematical Society
ISSN
0024-6115
e-ISSN
1460-244X
Volume of the periodical
121
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
33
Pages from-to
584-616
UT code for WoS article
000566906300004
EID of the result in the Scopus database
2-s2.0-85089503891