On generalized self-similarities of cut-and-project sets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00345343" target="_blank" >RIV/68407700:21340/21:00345343 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.laa.2021.05.010" target="_blank" >https://doi.org/10.1016/j.laa.2021.05.010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.laa.2021.05.010" target="_blank" >10.1016/j.laa.2021.05.010</a>
Alternative languages
Result language
angličtina
Original language name
On generalized self-similarities of cut-and-project sets
Original language description
Cut-and-project sets $SigmasubsetR^n$ represent one of the types of uniformly discrete relatively dense sets. They arise by projection of a section of a higherdimensional lattice to a suitably oriented subspace. Cut-and-project sets find application in solid state physics as mathematical models of atomic positions in quasicrystals, the description of their symmetries is therefore of high importance. We focus on the question when a linear map $A$ on $R^n$ is a self-similarity of a cutand- project set $Sigma$, i.e. satisfies $ASigmasubsetSigma$. We characterize such mappings $A$ and provide a construction of a suitable cut-and-project set $Sigma$. We determine minimal dimension of a lattice which permits construction of such a set $Sigma$.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Linear Algebra and Its Applications
ISSN
0024-3795
e-ISSN
1873-1856
Volume of the periodical
625
Issue of the periodical within the volume
September
Country of publishing house
US - UNITED STATES
Number of pages
43
Pages from-to
279-321
UT code for WoS article
000658907000015
EID of the result in the Scopus database
2-s2.0-85106953044