All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Probing the Pomeron spin structure with Coulomb-nuclear interference

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00349696" target="_blank" >RIV/68407700:21340/21:00349696 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.physletb.2021.136262" target="_blank" >https://doi.org/10.1016/j.physletb.2021.136262</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.physletb.2021.136262" target="_blank" >10.1016/j.physletb.2021.136262</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Probing the Pomeron spin structure with Coulomb-nuclear interference

  • Original language description

    Polarized pp elastic scattering at small angles in the Coulomb-nuclear interference (CNI) region offers a unique opportunity to study the spin structure of the Pomeron. Electromagnetic effects in elastic amplitude can be equivalently treated either as Coulomb corrections to the hadronic amplitude (Coulomb phase), or as absorption corrections to the Coulomb scattering amplitude. We perform the first calculation of the Coulomb phase for the spin-flip amplitude and found it significantly exceeding the widely used non-flip Coulomb phase. The alternative description in terms of absorption corrections, though equivalent, turned out to be a more adequate approach for the Coulomb corrected spin-flip amplitude. Inspired by the recent high statistics measurements of single-spin asymmetry with the HJET polarimeter at the BNL, we also performed a Regge analysis of data, aiming at disentangling the Pomeron contribution. However, in spite of an exceptional accuracy of the data, they do not allow to single out the Pomeron term, which strongly correlates with the major sub-leading Reggeons. A stable solution can be accessed only by making additional ad hoc assumptions, e.g. assuming the Pomeron to be a simple Regge pole, or fixing some unknown parameters. Otherwise, in addition to the STAR data at s=200GeV new measurements, say at 100GeV or 500GeV, could become decisive.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10303 - Particles and field physics

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physics Letters B

  • ISSN

    0370-2693

  • e-ISSN

    1873-2445

  • Volume of the periodical

    816

  • Issue of the periodical within the volume

    May

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    6

  • Pages from-to

  • UT code for WoS article

    000647421500064

  • EID of the result in the Scopus database

    2-s2.0-85103551199