All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Machine Learning Estimators for Jet Shapes Background Correction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00353104" target="_blank" >RIV/68407700:21340/21:00353104 - isvavai.cz</a>

  • Result on the web

    <a href="http://gams.fjfi.cvut.cz" target="_blank" >http://gams.fjfi.cvut.cz</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Machine Learning Estimators for Jet Shapes Background Correction

  • Original language description

    Jet shapes and structure observables are the key point of interest in heavy-ion physics. As the dominant background of soft processes complicates the measurement of jet properties, it is necessary to perform the correction of the jet properties. Machine learning (ML) methods such as artiffcial neural networks (ANN), decision trees and random forests are commonly used for the regression tasks. Thus, the observed uncorrected jet properties can be used as the input variables for the ML models estimating the real corrected jet properties. In this paper, we explore the potential of ML algorithms for different combinations of input jet properties. Furthermore, we use a convolutional neural network (CNN) model to test whether the deep learning approaches can improve the estimation performance. Today, deep learning models are typically used for the neutrino experiments, such as the NOvA experiment [1, 2]. We aim to improve the background correction of the jet properties in comparison to the established area-based method.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10303 - Particles and field physics

Result continuities

  • Project

    <a href="/en/project/LTT18001" target="_blank" >LTT18001: Collaboration on experiments in Fermi National Accelerator Laboratory, USA</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    SPMS 2020/21 Stochastic and Physical Monitoring Systems, Proceedings of the international conferences

  • ISBN

    978-80-01-06922-6

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    53-60

  • Publisher name

    České vysoké učení technické v Praze

  • Place of publication

    Praha

  • Event location

    Malá Skála

  • Event date

    Jun 24, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article