All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Alzheimer disease diagnostics from EEG via Wishart distribution of fractional processes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00353487" target="_blank" >RIV/68407700:21340/21:00353487 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s11760-021-01875-9" target="_blank" >https://doi.org/10.1007/s11760-021-01875-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11760-021-01875-9" target="_blank" >10.1007/s11760-021-01875-9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Alzheimer disease diagnostics from EEG via Wishart distribution of fractional processes

  • Original language description

    Exact estimation of Hurst exponent from a signal is a complex task that determines the fractional character of the investigated sample. In this work, we propose a maximum likelihood technique using Wishart distribution and autocorrelation structure of the investigated time series. Unlike conventional methods, we perform signal segmentation and use the aggregated data to obtain an unbiased estimate of Hurst exponent. The efficiency of the estimation is validated by four different methods of fractional Brownian motion generation. The resulting estimates have very tiny confidence intervals as well as small mean square error. Additionally, the proposed methodology has been applied to 19-channel EEG time series and their Hurst exponent estimation related to the diagnostics of Alzheimer's disease.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIGNAL IMAGE AND VIDEO PROCESSING

  • ISSN

    1863-1703

  • e-ISSN

    1863-1711

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    8

  • Pages from-to

    1435-1442

  • UT code for WoS article

    000627659700001

  • EID of the result in the Scopus database