The abstract Birman-Schwinger principle and spectral stability
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F22%3A00353893" target="_blank" >RIV/68407700:21340/22:00353893 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s11854-022-0232-5" target="_blank" >https://doi.org/10.1007/s11854-022-0232-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11854-022-0232-5" target="_blank" >10.1007/s11854-022-0232-5</a>
Alternative languages
Result language
angličtina
Original language name
The abstract Birman-Schwinger principle and spectral stability
Original language description
We discuss abstract Birman-Schwinger principles to study spectra of self-adjoint operators subject to small non-self-adjoint perturbations in a factorised form. In particular, we extend and in part improve a classical result by Kato which ensures that the spectrum does not change under small perturbations. As an application, we revisit known results for Schrodinger and Dirac operators in Euclidean spaces and establish new results for Schrodinger operators in three-dimensional hyperbolic space.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GX20-17749X" target="_blank" >GX20-17749X: New challenges for spectral theory: geometry, advanced materials and complex fields</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal d'Analyse Mathématique
ISSN
0021-7670
e-ISSN
1565-8538
Volume of the periodical
148
Issue of the periodical within the volume
October
Country of publishing house
IL - THE STATE OF ISRAEL
Number of pages
38
Pages from-to
361-398
UT code for WoS article
000884960700008
EID of the result in the Scopus database
2-s2.0-85142156065