All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The scientific potential and technological challenges of the High-Luminosity Large Hadron Collider program

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F22%3A00357879" target="_blank" >RIV/68407700:21340/22:00357879 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1088/1361-6633/ac5106" target="_blank" >https://doi.org/10.1088/1361-6633/ac5106</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6633/ac5106" target="_blank" >10.1088/1361-6633/ac5106</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The scientific potential and technological challenges of the High-Luminosity Large Hadron Collider program

  • Original language description

    We present an overview of the High-Luminosity (HL-LHC) program at the Large Hadron Collider (LHC), its scientific potential and technological challenges for both the accelerator and detectors. The HL-LHC program is expected to start circa 2027 and aims to increase the integrated luminosity delivered by the LHC by an order of magnitude at the collision energy of 14 TeV. This requires upgrades to the injector system, accelerator complex and luminosity levelling. The two experiments, ATLAS and CMS, require substantial upgrades to most of their systems in order to cope with the increased interaction rate, and much higher radiation levels than at the current LHC. We present selected examples based on novel ideas and technologies for applications at a hadron collider. Both experiments will replace their tracking systems. We describe the ATLAS pixel detector upgrade featuring novel tilted modules, and the CMS Outer Tracker upgrade with a new module design enabling use of tracks in the level-1 trigger system. CMS will also install state-of-the-art highly segmented calorimeter endcaps. Finally, we describe new picosecond precision timing detectors of both experiments. In addition, we discuss how the upgrades will enhance the physics performance of the experiments, and solve the computing challenges posed by the expected large data sets. The physics program of the HL-LHC is focused on precision measurements probing the limits of the Standard Model (SM) of particle physics and discovering new physics. We present a selection of studies that have been carried out to motivate the HL-LHC program. A central topic of exploration will be the characterization of the Higgs boson. The large HL-LHC data samples will extend the sensitivity of searches for new particles or new interactions whose existence has been hypothesized in order to explain shortcomings of the SM. Finally, we comment on the nature of large scientific collaborations.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10303 - Particles and field physics

Result continuities

  • Project

    <a href="/en/project/LM2018104" target="_blank" >LM2018104: Research Infrastructure for experiments at CERN</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Reports on Progress in Physics

  • ISSN

    0034-4885

  • e-ISSN

    1361-6633

  • Volume of the periodical

    85

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    46

  • Pages from-to

  • UT code for WoS article

    000777808300001

  • EID of the result in the Scopus database

    2-s2.0-85128244912