Palindromic length and reduction of powers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F22%3A00361402" target="_blank" >RIV/68407700:21340/22:00361402 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.tcs.2022.07.015" target="_blank" >https://doi.org/10.1016/j.tcs.2022.07.015</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2022.07.015" target="_blank" >10.1016/j.tcs.2022.07.015</a>
Alternative languages
Result language
angličtina
Original language name
Palindromic length and reduction of powers
Original language description
The palindromic length of a finite word v is the minimum number of palindromes whose concatenation is equal to v. It was conjectured in 2013 that for every aperiodic infinite word x, the palindromic length of its factors is not bounded. Let x be an infinite aperiodic word with a bounded palindromic length and containing infinitely many occurrences of the fifth power u5 of some word u. In this paper, we prove that we can erase from x extra powers of u and of its reversal uR to get another infinite aperiodic word of bounded palindromic length which does not contain u5 nor (uR)5. This result is not sufficient to prove that x does not exist but may give a hint for this proof.(c) 2022 Elsevier B.V. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
1879-2294
Volume of the periodical
930
Issue of the periodical within the volume
September
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
106-115
UT code for WoS article
000862840900010
EID of the result in the Scopus database
2-s2.0-85134812176