All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Tracer-scale Mo and W Extraction in the Cyanex 600/Nitric Acid System

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F22%3A00364882" target="_blank" >RIV/68407700:21340/22:00364882 - isvavai.cz</a>

  • Result on the web

    <a href="https://indico.fjfi.cvut.cz/event/195/attachments/1106/1576/radchem2022_book_of_abstracts_final_EC1_FINAL.pdf" target="_blank" >https://indico.fjfi.cvut.cz/event/195/attachments/1106/1576/radchem2022_book_of_abstracts_final_EC1_FINAL.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Tracer-scale Mo and W Extraction in the Cyanex 600/Nitric Acid System

  • Original language description

    The work deals with a complex topic of liquid-liquid extraction of Mo and W from the Sg point of view, which puts emphasis on extraction rate and efficiency. The topic can be divided into three main areas of focus: exploring the possibility of employing industrial grade extraction agent Cyanex 600 for extraction of group 6 elements from nitric acid solutions, suggesting the extraction mechanism of both Mo and W in the Cyanex 600/HNO3 system, and describing the system’s behaviour in sub-minute continuous extraction process using microfluidic techniques. The Cyanex 600/HNO3 system characterization revealed similarity with extraction mechanism of organophosphorus acids. The mechanism of Mo extraction with Cyanex 600 was established and apparent extraction constants of three pH-dependent extraction sub-processes were calculated. Although it was not proved with absolute certainty that the mechanisms for W and Mo are the same, results for W extraction were determined identically. In addition, the data analysis provided value of apparent dimerization constant of Cyanex 600 in kerosene. Based on its value, and the mechanism itself, it was revealed that main component of Cyanex 600 might not be Cyanex 272 as anticipated, but rather its dithio-derivate Cyanex 301. Microfluidic system for fast extraction was successfully employed, and yielded aqueous-to-organic overall volumetric mass transfer coefficients that quantify kinetic performance of the system under given conditions. The region between 0.1 and 0.01 M HNO3 was identified as the most promising for potential Sg application for its fastest kinetics and extraction efficiency for both Mo and W. Furthermore, two microfluidic mixing techniques were compared: extraction in a capillary (inner diameter of 250 μm) and in a micromixer chip. Both were shown to have almost identical kinetic performance.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10402 - Inorganic and nuclear chemistry

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů