All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A family of orthogonal polynomials corresponding to Jacobi matrices with a trace class inverse

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F22%3A00365621" target="_blank" >RIV/68407700:21340/22:00365621 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.jat.2022.105769" target="_blank" >https://doi.org/10.1016/j.jat.2022.105769</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jat.2022.105769" target="_blank" >10.1016/j.jat.2022.105769</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A family of orthogonal polynomials corresponding to Jacobi matrices with a trace class inverse

  • Original language description

    Assume that {an; n > 0} is a sequence of positive numbers and n-ary sumation a -1 fin = an + k2an-1 where k is an element of (0, 1) is a parameter, and let {Pn(x)} be an orthonormal polynomial sequence defined by the three-term recurrence alpha 0P1(x) + (fi 0 -x)P0(x) =0, alpha n Pn+1(x) + (fin - x)Pn(x) + alpha n-1Pn-1(x) =0 for n > 1, with P0(x) = 1. Let J be the corresponding Jacobi (tridiagonal) matrix, i.e. Jn,n = fin, Jn,n+1 = Jn+1,n = alpha n for n > 0. Then J-1 exists and belongs to the trace class. We derive an explicit formula for Pn(x) as well as for the characteristic function of J and describe the orthogonality measure for the polynomial sequence. As a particular case, the modified q-Laguerre polynomials are introduced and studied. (c) 2022 Elsevier Inc. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Approximation Theory

  • ISSN

    0021-9045

  • e-ISSN

    1096-0430

  • Volume of the periodical

    279

  • Issue of the periodical within the volume

    105769

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    22

  • Pages from-to

  • UT code for WoS article

    000797901300003

  • EID of the result in the Scopus database

    2-s2.0-85129039696