Cycles of a given length in tournaments
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F23%3A00361763" target="_blank" >RIV/68407700:21340/23:00361763 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14330/23:00130429
Result on the web
<a href="http://hdl.handle.net/10467/107776" target="_blank" >http://hdl.handle.net/10467/107776</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jctb.2022.07.007" target="_blank" >10.1016/j.jctb.2022.07.007</a>
Alternative languages
Result language
angličtina
Original language name
Cycles of a given length in tournaments
Original language description
We study the asymptotic behavior of the maximum number of directed cycles of a given length in a tournament: let c(l) be the limit of the ratio of the maximum number of cycles of length l in an n-vertex tournament and the expected number of cycles of length l in the random n-vertex tournament, when n tends to infinity. It is well-known that c(3)=1 and c(4)=4/3. We show that c(l)=1 if and only if l is not divisible by four, which settles a conjecture of Bartley and Day. If l is divisible by four, we show that 1+2(2/π)^l <= c(l) <= 1+(2/π+o(1))^l and determine the value c(l) exactly for l=8. We also give a full description of the asymptotic structure of tournaments with the maximum number of cycles of length l when l is not divisible by four or l=4 or l=8.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Combinatorial Theory, Series B
ISSN
0095-8956
e-ISSN
1096-0902
Volume of the periodical
158
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
29
Pages from-to
117-145
UT code for WoS article
000901805500006
EID of the result in the Scopus database
2-s2.0-85135537488