All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cycles of a given length in tournaments

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F23%3A00361763" target="_blank" >RIV/68407700:21340/23:00361763 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14330/23:00130429

  • Result on the web

    <a href="http://hdl.handle.net/10467/107776" target="_blank" >http://hdl.handle.net/10467/107776</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jctb.2022.07.007" target="_blank" >10.1016/j.jctb.2022.07.007</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cycles of a given length in tournaments

  • Original language description

    We study the asymptotic behavior of the maximum number of directed cycles of a given length in a tournament: let c(l) be the limit of the ratio of the maximum number of cycles of length l in an n-vertex tournament and the expected number of cycles of length l in the random n-vertex tournament, when n tends to infinity. It is well-known that c(3)=1 and c(4)=4/3. We show that c(l)=1 if and only if l is not divisible by four, which settles a conjecture of Bartley and Day. If l is divisible by four, we show that 1+2(2/π)^l <= c(l) <= 1+(2/π+o(1))^l and determine the value c(l) exactly for l=8. We also give a full description of the asymptotic structure of tournaments with the maximum number of cycles of length l when l is not divisible by four or l=4 or l=8.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Combinatorial Theory, Series B

  • ISSN

    0095-8956

  • e-ISSN

    1096-0902

  • Volume of the periodical

    158

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    29

  • Pages from-to

    117-145

  • UT code for WoS article

    000901805500006

  • EID of the result in the Scopus database

    2-s2.0-85135537488