All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Effects of the channel radius on the direct laser acceleration of positrons

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F23%3A00368192" target="_blank" >RIV/68407700:21340/23:00368192 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1117/12.2665637" target="_blank" >https://doi.org/10.1117/12.2665637</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1117/12.2665637" target="_blank" >10.1117/12.2665637</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Effects of the channel radius on the direct laser acceleration of positrons

  • Original language description

    Plasma acceleration has been lately considered to become an auspicious technology for building a future multi-TeV electron-positron collider, leading to higher compactness of the device. Self-generated fields from laser-plasma interaction are, however, in contrast to electrons, usually not well-suited for positron focusing and on-axis guiding. In addition, an external positron source is required. Here, we study the method of direct laser acceleration of positrons. The positron generation is assured by an orthogonal collision of a multi-PW laser pulse and a GeV electron beam by the nonlinear Breit-Wheeler process. The acceleration subsequently takes place in a preformed plasma channel with a finite (tens-of-microns-long) radius. In this work, we examine how the choice of channel radius influences the process of acceleration. We show that this scheme is robust regarding the radius size. A significant number of the positrons is kept near the propagation axis, even if the channel radius was increased by almost 100 µm. The mechanism was examined by quasi-3D particle-in-cell simulation carried out with the OSIRIS framework.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10306 - Optics (including laser optics and quantum optics)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proc. SPIE 12580, Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers V

  • ISBN

    978-1-5106-6280-3

  • ISSN

    0277-786X

  • e-ISSN

    1996-756X

  • Number of pages

    5

  • Pages from-to

  • Publisher name

    SPIE

  • Place of publication

    Bellingham (stát Washington)

  • Event location

    Praha

  • Event date

    Apr 24, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article