All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Measurement of inclusive and leading subjet fragmentation in pp and Pb-Pb collisions at root sNN=5.02 TeV

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F23%3A00368617" target="_blank" >RIV/68407700:21340/23:00368617 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/JHEP05(2023)245" target="_blank" >https://doi.org/10.1007/JHEP05(2023)245</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/JHEP05(2023)245" target="_blank" >10.1007/JHEP05(2023)245</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Measurement of inclusive and leading subjet fragmentation in pp and Pb-Pb collisions at root sNN=5.02 TeV

  • Original language description

    This article presents new measurements of the fragmentation properties of jets in both proton-proton (pp) and heavy-ion collisions with the ALICE experiment at the Large Hadron Collider (LHC). We report distributions of the fraction z(r) of transverse momentum carried by subjets of radius r within jets of radius R. Charged-particle jets are reconstructed at midrapidity using the anti-k(T) algorithm with jet radius R = 0.4, and subjets are reconstructed by reclustering the jet constituents using the anti-k(T) algorithm with radii r = 0.1 and r = 0.2. In proton-proton collisions, we measure both the inclusive and leading subjet distributions. We compare these measurements to perturbative calculations at next-to-leading logarithmic accuracy, which suggest a large impact of threshold resummation and hadronization effects on the z(r) distribution. In heavy-ion collisions, we measure the leading subjet distributions, which allow access to a region of harder jet frag- mentation than has been probed by previous measurements of jet quenching via hadron fragmentation distributions. The z(r) distributions enable extraction of the parton-to-subjet fragmentation function and allow for tests of the universality of jet fragmentation functions in the quark-gluon plasma (QGP). We find no significant modification of z(r) distributions in Pb-Pb compared to pp collisions. However, the distributions are also consistent with a hardening trend for z(r)< 0.95, as predicted by several jet quenching models. As z(r) -> 1 our results indicate that any such hardening effects cease, exposing qualitatively new possibilities to disentangle competing jet quenching mechanisms. By comparing our results to theoretical calculations based on an independent extraction of the parton-to-jet fragmentation function, we find consistency with the universality of jet fragmentation and no indication of factorization breaking in the QGP.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10303 - Particles and field physics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of High Energy Physics

  • ISSN

    1029-8479

  • e-ISSN

    1029-8479

  • Volume of the periodical

    2023

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    IT - ITALY

  • Number of pages

    34

  • Pages from-to

  • UT code for WoS article

    001022895100001

  • EID of the result in the Scopus database

    2-s2.0-85161037786